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Abstract
Transitions between metabasins in supercooled liquids seem to occur
through rapid collective particle rearrangements. These events have been
called ‘democratic’ as they appear homogeneous over a significant number
of particles. This could suggest that ‘democratic’ rearrangements are
fundamentally distinct to those leading to dynamic heterogeneity. Here
we show, however, that this apparent homogeneous particle motion can be
explained solely in terms of dynamic facilitation, and is therefore intriniscally
heterogeneous. We do so by studying metabasin transitions in facilitated spin
models and constrained lattice gases. We find that metabasin transitions occur
through a sequence of locally facilitated events taking place over a relatively
short time frame. When observed on small enough spatial windows these
events appear sudden and homogeneous. Our results indicate that metabasin
transitions, while apparently homogeneous and ‘democratic’, are yet another
manifestation of dynamical heterogeneity in glass formers.

PACS numbers: 05.60.−k, 05.45.−a, 74.25.Fy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we study metabasin (MB) [1] transitions, that is, transitions between low
energy/low activity configurations, in kinetically constrained models (KCMs) of glass formers
[2–6]. We follow closely the recent work of Appignanesi et al [7] (see also [8, 9]) who studied
this problem in an atomistic model, a Lennard–Jones binary mixture [10], by means of
molecular dynamics simulations. In [7] it was found that transitions between metabasins
involved relatively fast and collective rearrangements of a significant number of particles
forming compact clusters in space. These apparent homogeneous relaxation events were
termed ‘democratic’ [7, 11]. A natural question is whether democratic events are distinct in
nature to those associated with dynamic heterogeneity [12]. KCMs are well-studied models,
and their simplicity allows us to study MB transitions in much more detail than what is possible
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Figure 1. Top: trajectories for the FA model (left) at inverse temperature β = 3, and for the
East model (right) at β = 4. The length of the trajectories is several relaxation times. The boxes
indicate the sub-trajectories used to calculate the distance matrices. The subsystem size is N = 50
for both models. Bottom: corresponding distance matrices �2(t ′, t ′′) for the sub-trajectories in
the FA model (left) the East model (right).

in molecular dynamics simulations of atomistic models. We show that the apparent democratic
particle motion that occurs during a metabasin transition can be understood as a direct result
of dynamic facilitation, the fundamental property of KCMs which is the origin of dynamic
heterogeneity [13, 14] in these systems.

2. Metabasin transitions in facilitated spin models

The simplest microscopic models built on the idea of dynamic facilitation are the so-called
facilitated spin models (FSMs), such as the Fredrickson–Andersen (FA) model [2] and its
directional counterpart the East model [3]. In one dimension these models are described by
a chain of Ising spins ni = {0; 1}, with a trivial Hamiltonian H = ∑

i ni . Here ni = 1
represents a mobile site, or excitation, conversely ni = 0 represents an immobile, or jammed
site. Glassiness is the result of local dynamical rules that specify the ability of a site to change
state. In the FA model a site can only flip if either of its nearest neighbours are in the excited

state. The transition rates are 10
ε−→ 11, 11

1−→ 10, 01
ε−→ 11, 11

1−→ 01, where ε = e−β

and β = 1/T . For the East model the last two transitions are not allowed: a spin may only flip
if its nearest neighbour to the left is excited, consequently excitations propagate in an eastward
direction. Relaxation is Arrhenius in the FA and super-Arrhenius in the East model [2, 3, 6,
14, 15].

The top panels of figure 1 show trajectories for the FA and East models. Mobile sites are
dark and immobile sites are white. In both cases the trajectory is several times the length of
the structural relaxation time, τα , at the corresponding temperature. The trajectories illustrate
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the familiar features of dynamic facilitation [14]: at low temperatures trajectories are spatially
heterogeneous, excitations form continuous lines in spacetime, and there are large inactive
spacetime ‘bubbles’.

In order to make direct connection with the observations in molecular dynamics
simulations [7] we study metabasin transitions by computing the ‘distance matrix’ (DM),
defined as

�2(t ′, t ′′) = 1

N

N∑

i=1

|ki(t
′) − ki(t

′′)|2, (1)

where ki(t) is the number of times site i has changed state in time t. Hence, �2(t ′, t ′′) represents
the average squared number of configuration changes, or ‘kinks’, in the time interval (t ′, t ′′).
Our definition of the DM should be compared to that used in [7, 8, 9, 16] for atomistic models,

�̃2(t ′, t ′′) = 1

N

N∑

i=1

|ri (t
′) − ri (t

′′)|2, (2)

where ri (t) is the position of particle i at time t [17]. In this case �̃2(t ′, t ′′) measures the
system’s averaged squared displacement between times t ′ and t ′′. For the KCMs a kink defines
a significant structural relaxation within a coarse-grained volume of spacetime and the DM as
defined in equation (1) is analogous to that of equation (2) as used in atomistic simulation.

Just as in the atomistic case, in order to focus on individual metabasin transitions we need
to consider a small enough subsystem [18]. The boxes in the top panels of figure 1 indicate the
sub-trajectories we use for the analysis. The spatial extension of our subsystems in each case is
comparable to the dynamic correlation length, 〈ni〉−1 ≈ eβ [14, 18]. Due to the heterogeneous
nature of the dynamics, mobility within a sub-region changes dramatically over the course
of time. For long periods the system can remain inactive until eventually a sudden burst
of activity occurs as an excitation line enters and eventually passes through the observation
window. The bottom panels of figure 1 show the DMs for the chosen sub-trajectories.

The DMs for the simple FA and East models show remarkable similarity to those seen in
atomistic models in [7]. The large black squares in the DMs of figure 1 correspond to times
when the subsystem is trapped in a metabasin. It is clear from inspection of the associated
sub-trajectories that these periods correspond to the inactive bubbles in spacetime. These
quiescent periods are punctuated by bursts of activity that rearrange the subsystem into a
different metabasin, seen as new black square in the DM. Since our simple microscopic
models are built purely from the idea of facilitation it is clear that the burst of mobility during
a MB transition is not the result of a democratic motion of particles but rather a sequence of
cooperative events that occur on a timescale far smaller than the typical MB lifetime.

To further illustrate this idea consider the measure δ2(t, θ), the averaged squared kinks
within the sub-region in a time interval θ ,

δ2(t, θ) = �2(t − θ/2, t + θ/2), (3)

which is shown in figure 2 (solid lines). This quantity is simply �(t ′, t ′′) measured along the
diagonal t ′′ = t ′ + θ . Again, following [7] we specify that θ is significantly smaller than τα

but larger than the timescale associated with any microscopic motion. For the FA model we
choose θ = 800 and for the East model θ = 8 × 105. From the figure we see that δ2(t, θ)

is low during periods of inactivity in the trajectory and there are sharp peaks signifying the
transition between metabasins as an excitation line sweeps through the observed region.

The notion of democratic particle motion [7] was inferred from the fact that the peaks
in the average mobility did not result from a substantial displacement of a few particles, but
rather an increase in the average displacement of a significant fraction (as much as 30%)
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Figure 2. Average squared kinks δ2(t, θ) (solid line) for the FA model (left) and East model
(right). θ = 800 for the FA model, and θ = 8 × 105 for the East model. Also shown is the fraction
of sites m(t, φ) with a higher than average number of kinks in the time interval φ = 200 (FA) and
φ = 2 × 105 (East). Dashed lines indicate the concentration of excitations within the sub-region,
csub(t); the curves are unscaled and have been shifted vertically to aid clarity.

of particles within the subsystem. Something similar occurs in the FSMs. In figure 2 we
also show m(t, φ), the fraction of sites in the sub-region that have experienced a higher than
average number of kinks in the time interval φ. The peaks in m(t, φ) coincide with those
of δ2(t, θ) and at the corresponding time a significant fraction of sites within the sub-region
exhibit a high number of kinks. However, this apparent democratic motion is the of result of
facilitation, the global relaxation event resulting from a sequence of locally facilitated ones.
The extent to which the excitation line penetrates the sub-region determines the scale of the
apparent democracy.

As illustrated in the spacetime trajectories of figure 1 for both the FA and East models it is
the presence of excitations that drives the dynamics within a given region of the system. The
features observed in the DMs are a direct result of the fluctuating concentration of excitations
within the sub-region, csub. To illustrate this point we plot csub(t) along each trajectory, shown
as the dashed line in both panels of figure 2 (note that the curves for csub are unscaled and have
been shifted vertically to aid visualisation). We can see that the quantities csub(t) and δ2(t, θ)

behave similarly.
For larger subsystems the sharp features seen in the DMs begin to disappear as the

dynamics becomes more homogeneous in nature. Figure 3 shows DMs for the East model
at two larger system sizes; as the size of the sub-region is increased the island structure of
the DMs is quickly lost forming a dark band along the diagonal t ′′ = t ′. The increasing
homogeneity in the temporal variation of the subsystem dynamics is also reflected in the
average squared kinks, right panel of figure 3. Here we show the average squared kinks for
the East model using a subsystem of size N = 300, where θ = 8 × 105 once again. Although
small in comparison to figure 2 the dynamics within the sub-region still fluctuates significantly,
a detail which is somewhat obscured in the DM itself. In addition, fluctuations in the fraction
of sites experiencing above average kinks, m(t, φ), still coincides with δ2(t, θ). The dashed
line again indicates the concentration of excitations within the sub-region, the fluctuations of
which agree precisely with m(t, φ).

3. Metabasin transitions in constrained lattice gases

Another class of simple KCMs are constrained lattice gases [4–6, 19]. Here we consider
the two-vacancy assisted triangular lattice gas, or (2)-TLG [3, 20]. The system consists of
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Figure 3. Left and centre: distance matrices for the East model at two different subsystem sizes,
N = 150 (left), N = 300 (centre). Right: average squared kinks δ2(t, θ) (solid line) for the East
model subsystem of size N = 300 where θ = 8 × 105. Also shown is the fraction of sites m(t, φ)

with a higher than average number of kinks in the time interval φ = 2 × 105. The dashed line
(which has been raised vertically and is unscaled) indicates the concentration of excitations within
the sub-region, csub(t). The fluctuations coincide perfectly with m(t, φ).

Figure 4. Distance matrix �2(t ′, t ′′) for the (2)-TLG. The data correspond to a 10 × 10 subregion
from a lattice at particle density ρ = 0.79 (see figure 5).

hard-core particles that move on a two-dimensional lattice of triangular geometry; there are
no static correlations between particles and at most each site can hold one particle at a time.
Any particle on the lattice can only move to one of its six nearest neighbour sites if the
following rules are satisfied: (i) the target site is unoccupied and (ii) both the two mutual
nearest neighbours of the initial and target site are also empty. The physical interpretation of
the dynamical rule is the steric constraint on particle motion that occurs within a dense fluid.
The dynamics of the model is highly collective, for a particle to be able to move first requires
the cooperative rearrangement of many of its neighbours.

We again choose to examine the dynamics within a small sub-region of a large system
using the definition of the distance matrix given in equation (1). This definition is convenient
since it accounts for all particles which enter or leave the sub-region during the course of a
given trajectory, rather than those simply present at a given time. Here a kink corresponds to
a particle entering or leaving a site. By using a sub-system within an extensive lattice we also
avoid the potential problem of forming a backbone of frozen particles that could percolate the
region of interest [4, 5].

Figure 4 shows an example distance matrix for a 10×10 sub-region taken from a (2)-TLG
lattice at particle density ρ = 0.79. The total simulation length is 106, the persistence time
at the chosen density [20]. The DM exhibits the same features found in the FSMs and in
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Figure 5. Left: average squared kinks δ2(t, θ) (solid line) for the (2)-TLG model. Also shown
is the fraction of sites m(t, φ) with a higher than average number of kinks in the time interval
φ = 104. Right: the top figure shows the sub-region considered. The dynamics within this
sub-system make up the distance matrix shown in figure 4 and in the left panel. The numbered
images are snapshots of the particle field within the sub-region at the times indicated in the left
panel. Particles which have moved position in the time interval φ = 104 are coloured black.

atomistic models. The trajectory is characterised by extended regions of low activity, which
appear as dark squares in the DM, with relatively quick transitions between them1. Figure 5
(left) shows the average squared kinks, δ2(t, θ), for the same trajectory, where θ = 4 × 104.
Also shown is the fraction of sites with above average kinks in a time window φ = 104.
As for the FSMs, at the peaks in δ2(t, θ) a significant fraction of sites in the sub-region are
experiencing a high level of activity. From direct analysis of the particle trajectories we find
the MB-like regions correspond to configurations in which the majority of particles within
the sub-region are blocked and remain frozen in position for large periods of time. A burst
of motion results from a sequence of unlocking events which enables the particles to quickly
rearrange themselves. After the effective mobility excitation passes the particles are left in a
completely or partially frozen configuration. This dynamical picture is in direct agreement
with previous analysis of the TLG models [5, 20, 21].

Due to the particle nature of the TLG model it is also possible to consider the original
definition of the DM as given in equation (2), i.e. the subsystem’s averaged squared
displacement between times t ′ and t ′′. Since the problem of a backbone prevents simulation of
a small system it is necessary to modify the summation such that only those particles present
in the sub-region at time t ′ are considered. Figure 6 shows (left panel) the resulting DM for the
same 10 × 10 subsystem used previously. The DM is similar to that of figure 4 indicating that
both definitions of the distance matrix capture the same dynamical information. This is also
evident when analysing the average squared displacement δ2(t, θ) (again using θ = 4 × 104)
as shown in the right-hand panel (solid line). Also shown is the fraction of particles with
above average displacement in the time interval φ = 104. In agreement with the results of
atomistic simulations the peaks in the average squared displacement are accompanied by a
large displacement of a significant fraction of the particles within the subsystem.

In a recent paper [21] we identify a possible elementary excitation for the (2)-TLG by
studying the dynamics of the model with the iso-configurational (IC) method [22]. Here
one constructs an ensemble of equal length trajectories which share a common initial particle
configuration but with different initial particle momenta (for the lattice gas Monte Carlo used to

1 An animated movie showing the nature of the particle motion along the trajectory can be found at
http://www.nottingham.ac.uk/˜ppxloh/non-democratic.
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Figure 6. Left: distance matrix for the same (2)-TLG system of figure 5 now using the distance
matrix as defined in equation (2). In comparison with figure 4 it is evident both approaches capture
the same dynamical information. Right: this is also apparent in a plot of the average squared
displacement δ2(t, θ) (solid line) which agrees closely with the average squared kinks of figure 5.
The same value of θ has been used in both figures. Also shown is the fraction of particles m(t, φ)

with a higher than average displacement in the time interval φ = 104. The peaks in δ2(t, θ) are
clearly accompanied by a significant displacement of a large fraction of the particles within the
subsystem. The dashed line indicates the average cluster connectivity (see text) of particles within
the sub-region. The curve is unscaled and has been raised vertically to aid clarity.

simulate the TLG models one uses a different sequence of attempted moves for each trajectory).
As for the Lennard–Jones liquids studied previously [22], we found [21] heterogeneity in the
spatial distribution of the dynamic propensity,

〈
�r2

i

〉
IC, the squared displacement of particle

i averaged over all trajectories within the IC ensemble. This heterogeneity was found to
correlate well with a structural measure, the connectedness of particles to extended clusters
of vacancies [21]. This was defined as the total sum of the vacancy cluster sizes to which
a particle is connected to through its nearest neighbours [21]. Cluster connectivity was also
found to provide a good prediction of the instantaneous particle mobility within a single
trajectory. The most mobile particles at any given time are on average the most connected,
typically forming a ring around a large cluster of vacancies. To illustrate the role of cluster
connectivity for the dynamics of the (2)-TLG we plot the average cluster connectivity of
particles within the sub-region along the trajectory, shown as a dashed line in the right-hand
panel of figure 6. Once again the curve is unscaled and has been shifted vertically for clarity.
The fluctuations in the cluster connectivity match well (in particular the highest peaks) with
those of the average squared displacement (or average squared kinks) further illustrating
the role of high connectivity particles as the relevant dynamic excitations for the (2)-TLG
model.

4. Conclusions

We have shown that transitions between metabasins in glass formers can be understood in terms
of dynamic facilitation. The apparent ‘democratic’ collective particle rearrangements are really
a sequence of localised and facilitated events. Observed on small enough lengthscales they
just appear sudden and homogeneous. They are in essence another manifestation of dynamic
heterogeneity.
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The distance matrix, equation (1), encodes the trajectories in an elegant way and the
similarity between the DMs we observe here in KCMs, figures 1 and 4, and the ones measured
in molecular dynamics simulations [7–9] is remarkable. For KCMs we know that the observed
structure in the DM is just a projection of the spacetime correlations in trajectories, that is,
of inactive bubbles bounded by excitations lines (itself a consequence of phase coexistence
between active and inactive dynamical phases in KCMs [23]). Our results here give further
support to the view that atomistic models have trajectories with similar features.
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